
Unbounded Inner Product Functional Encryption,
with Succinct Keys

Edouard Dufour Sans and David Pointcheval

École Normale Supérieure
INRIA

June 6, 2019

Table of Contents

Background
Functional Encryption
ABDP
Applications of Inner Product Functional Encryption
Security of Inner Product Functional Encryption

Unbounded Inner Product Functional Encryption
Issues with Standard Inner Product Functional Encryption
Unbounded Inner Product Functional Encryption
Our construction
Technical Difficulties
Concurrent and Independent Work
Open problems

Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.

Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.

Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.

Get a function of the cleartext.
Function depends on the key.

Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.

Function depends on the key.

Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.

Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (pk,msk).

I Encrypt(pk,x): Returns c .

I KeyGen(msk ,f): Returns skf .

I Decrypt(skf ,c): Returns f (x).

FE example

msk

I want to receive encrypted emails.
I don’t want to be bothered with spam.

Decrypt and send to my colleague if urgent.

skfspam , skfurgentpk

FE example

msk

pk
skfspam , skfurgent

I don’t know what it is
but it’s spam!

Encpk(”Cheap RayBans!!!”)

Security definitions

Oracles:
Setup()

LeftOrRight(·,·)
KeyDer(·)
Finalize(·)

LoR(x0,x1)

Enc(xb)

KeyDer(f)

skf

Security definitions

Oracles:
Setup()

LeftOrRight(·,·)
KeyDer(·)
Finalize(·)

No cheating!
f (x0) 6= f (x1)

LoR(x0,x1)

Enc(xb)

KeyDer(f)

skf

The First Inner Product Functional Encryption

ABDP15
Fixed n. F ≈ Zn

p, f~y ≈ ~y .

I Setup(λ): Pick ~s
$← Zn

p. Return g~s , ~s.

I Encrypt(g~s , ~x): Pick r
$← Zp. Return

g r , g~x ·
(
g~s
)r

= g r , g~x+r ·~s .

I KeyGen(~s, ~y): Return 〈~s, ~y〉.
I Decrypt(〈~s, ~y〉, (g r , g~x+r ·~s)): Compute

gγ = 〈g~x+r ·~s , ~y〉/ (g r)〈~s,~y〉

and solve the discrete logarithm to return γ.

Application: Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation.

I Machine Learning Inference via Linear Regression.

Application: Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation.

I Machine Learning Inference via Linear Regression.

Application: Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation (if we encrypt the squares).

I Machine Learning Inference via Linear Regression.

Application: Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation (if we encrypt the squares).

I Machine Learning Inference via Linear Regression.

Leakage

Say you have a ciphertext for vector x.
The key for y lets you compute 〈x, y〉 =⇒ one projection.

m independent keys =⇒ m projections.
Actual number of keys you can give

Leakage

Say you have a ciphertext for vector x.
The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.

Actual number of keys you can give

Leakage

Say you have a ciphertext for vector x.
The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.
Actual number of keys you can give?

Leakage

Say you have a ciphertext for vector x.
The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.
Actual number of keys you can give depends on plaintext
distribution.

Table of Contents

Background
Functional Encryption
ABDP
Applications of Inner Product Functional Encryption
Security of Inner Product Functional Encryption

Unbounded Inner Product Functional Encryption
Issues with Standard Inner Product Functional Encryption
Unbounded Inner Product Functional Encryption
Our construction
Technical Difficulties
Concurrent and Independent Work
Open problems

Limitations of Inner Product Functional Encryption

What if you want to receive vectors of various lengths?

You need multiple public keys.
What if you want to create subcategories between vectors?
More keys.
What if you don’t know the size of the vector ahead of time?
No great solutions.

Limitations of Inner Product Functional Encryption

What if you want to receive vectors of various lengths?
You need multiple public keys.

What if you want to create subcategories between vectors?
More keys.
What if you don’t know the size of the vector ahead of time?
No great solutions.

Limitations of Inner Product Functional Encryption

What if you want to receive vectors of various lengths?
You need multiple public keys.
What if you want to create subcategories between vectors?

More keys.
What if you don’t know the size of the vector ahead of time?
No great solutions.

Limitations of Inner Product Functional Encryption

What if you want to receive vectors of various lengths?
You need multiple public keys.
What if you want to create subcategories between vectors?
More keys.

What if you don’t know the size of the vector ahead of time?
No great solutions.

Limitations of Inner Product Functional Encryption

What if you want to receive vectors of various lengths?
You need multiple public keys.
What if you want to create subcategories between vectors?
More keys.
What if you don’t know the size of the vector ahead of time?

No great solutions.

Limitations of Inner Product Functional Encryption

What if you want to receive vectors of various lengths?
You need multiple public keys.
What if you want to create subcategories between vectors?
More keys.
What if you don’t know the size of the vector ahead of time?
No great solutions.

Solution: Unbounded Inner Product Functional Encryption

I No fixed size for vectors (ciphertexts or keys).

I One constant-size public-key.

I Vectors are maps from indices to scalars.

I Identity-based version allows for categorization.

UIPFE Variants

We introduce two unbounded functionalities:

I Strict UIPFE: Indices of ciphertext must match those of key.

I Permissive UIPFE: Indices of ciphertext must contain those of
key.

UIPFE Variants

We introduce two unbounded functionalities:

I Strict UIPFE: Indices of ciphertext must match those of key.

I Permissive UIPFE: Indices of ciphertext must contain those of
key.

UIPFE Variants

We introduce two unbounded functionalities:

I Strict UIPFE: Indices of ciphertext must match those of key.

I Permissive UIPFE: Indices of ciphertext must contain those of
key.

Technical overview

ABDP builds on El Gamal.
Want n coordinates? Instantiate n El Gamal schemes you control.

How do we go to Unbounded?
Boneh-Franklin Identity-Based Encryption is ElGamal-like.

Technical overview

ABDP builds on El Gamal.
Want n coordinates? Instantiate n El Gamal schemes you control.
How do we go to Unbounded?

Boneh-Franklin Identity-Based Encryption is ElGamal-like.

Technical overview

ABDP builds on El Gamal.
Want n coordinates? Instantiate n El Gamal schemes you control.
How do we go to Unbounded?
Boneh-Franklin Identity-Based Encryption is ElGamal-like.

Our construction

Permissive UIPFE: Setup

Choose a pairing group (G1,G2,GT , g1, g2, e) and a hash function
H into G2.
Pick a single scalar s

$← Zp.
Return g s

1 , s.

Our construction

Permissive UIPFE: Encrypt

I Setup(λ): Pick s
$← Zp. Return g s

1 , s.

You have an unbounded vector (xi)i∈D and pk = g s
1 .

Pick r
$← Zp. Return (g r

1 , (ci)i∈D) where

ci = g xi
T · e(g s

1 ,H(i)r) ≈ g xi+rsi
T

Our construction

Permissive UIPFE: KeyGen

I Setup(λ): Pick s
$← Zp. Return g s

1 , s.

I Encrypt(g s , (xi)i∈D): Pick r
$← Zp. Return (g r

1 , (ci)i∈D)
where

ci = g xi
T · e(g s

1 ,H(i)r) ≈ g xi+rsi
T

You have an unbounded vector (yi)i∈D′ and sk = s.
Return ∏

i∈D′
H(i)−syi ≈ g

−〈~s,~y〉
2

Our construction

Permissive UIPFE: Decrypt

I Setup(λ): Pick s
$← Zp. Return g s

1 , s.

I Encrypt(g s , (xi)i∈D): Pick r
$← Zp. Return (g r

1 , (ci)i∈D)
where

ci = g xi
T · e(g s

1 ,H(i)r) ≈ g xi+rsi
T

I KeyGen(s, (yi)i∈D′): Return∏
i∈D′
H(i)−syi ≈ g

−〈~s,~y〉
2

You have a ciphertext (g r
1 , (ci)i∈D) and a key

∏
i∈D′ H(i)−syi

Compute

gγT = e

(
g r

1 ,
∏
i∈D′
H(i)−syi

)
·
∏
i∈D′

cyii

and recover γ.

Our construction

Permissive UIPFE

I Setup(λ): Pick s
$← Zp. Return g s

1 , s.

I Encrypt(g s , (xi)i∈D): Pick r
$← Zp. Return (g r

1 , (ci)i∈D)
where

ci = g xi
T · e(g s

1 ,H(i)r) ≈ g xi+rsi
T

I KeyGen(s, (yi)i∈D′): Return∏
i∈D′
H(i)−syi ≈ g

−〈~s,~y〉
2

I Decrypt(
∏

i∈D′ H(i)−syi ≈ g
−〈~s,~y〉
2 , (g r

1 , (ci)i∈D)): Compute

gγT = e

(
g r

1 ,
∏
i∈D′
H(i)−syi

)
·
∏
i∈D′

cyii

and recover γ.

Technical Difficulties: Norms

||x0 − x1|| = 0 mod p 6=⇒ x0 = x1 mod p

Other UIPFE works bypass this by bounding individual
components.
This doesn’t work here.
We define a pseudonorm and impose an upper bound on it.

Technical Difficulties: Key Homomorphism

In most (all?) IPFE schemes, keys are homomorphic:

f (α, sky , β, sky ′) = skαy+βy ′

This is typically fine by functionality.

But it becomes an issue in permissive UIPFE.
Need to adjust security definitions.

Technical Difficulties: Key Homomorphism

In most (all?) IPFE schemes, keys are homomorphic:

f (α, sky , β, sky ′) = skαy+βy ′

This is typically fine by functionality.
But it becomes an issue in permissive UIPFE.
Need to adjust security definitions.

Concurrent and Independent Work

Tomida and Takashima proposed UIPFE at ASIACRYPT18.

I No Random Oracles.

I Adaptive security.

I Only standard assumptions.

I Requires contiguous indices.

I No access control.

I Bigger keys, slower
operations.

Public Key Ciphertext Functional Key

TT18 28|G1| 7n|G1| 7n|G2|+ α

Ours |G1| |G1|+ n|GT | |G2|

Concurrent and Independent Work

Tomida and Takashima proposed UIPFE at ASIACRYPT18.

I No Random Oracles.

I Adaptive security.

I Only standard assumptions.

I Requires contiguous indices.

I No access control.

I Bigger keys, slower
operations.

Public Key Ciphertext Functional Key

TT18 28|G1| 7n|G1| 7n|G2|+ α

Ours |G1| |G1|+ n|GT | |G2|

Concurrent and Independent Work

Tomida and Takashima proposed UIPFE at ASIACRYPT18.

I No Random Oracles.

I Adaptive security.

I Only standard assumptions.

I Requires contiguous indices.

I No access control.

I Bigger keys, slower
operations.

Public Key Ciphertext Functional Key

TT18 28|G1| 7n|G1| 7n|G2|+ α

Ours |G1| |G1|+ n|GT | |G2|

Open problems

I Better security with efficiency.

I Different UIPFE functionalities.

I More functionalities.

Open problems

I Better security with efficiency.

I Different UIPFE functionalities.

I More functionalities.

Open problems

I Better security with efficiency.

I Different UIPFE functionalities.

I More functionalities.

Open problems

I Better security with efficiency.

I Different UIPFE functionalities.

I More functionalities.

References

1. Abdalla, Michel, et al. ”Simple functional encryption schemes
for inner products.” IACR International Workshop on Public
Key Cryptography. Springer, Berlin, Heidelberg, 2015.

2. Boneh, Dan, and Matt Franklin. ”Identity-based encryption
from the Weil pairing.” Annual international cryptology
conference. Springer, Berlin, Heidelberg, 2001.

3. Boneh, Dan, Amit Sahai, and Brent Waters. ”Functional
encryption: Definitions and challenges.” Theory of
Cryptography Conference. Springer, Berlin, Heidelberg, 2011.

4. O’Neill, Adam. ”Definitional Issues in Functional Encryption.”
IACR Cryptology ePrint Archive 2010 (2010): 556.

5. Tomida, Junichi, and Katsuyuki Takashima. ”Unbounded
Inner Product Functional Encryption from Bilinear Maps.”
International Conference on the Theory and Application of
Cryptology and Information Security. Springer, Cham, 2018.

	Background
	Functional Encryption
	ABDP
	Applications of Inner Product Functional Encryption
	Security of Inner Product Functional Encryption

	Unbounded Inner Product Functional Encryption
	Issues with Standard Inner Product Functional Encryption
	Unbounded Inner Product Functional Encryption
	Our construction
	Technical Difficulties
	Concurrent and Independent Work
	Open problems

	References

