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École Normale Supérieure
INRIA

June 6, 2019



Table of Contents

Background
Functional Encryption
ABDP
Applications of Inner Product Functional Encryption
Security of Inner Product Functional Encryption

Unbounded Inner Product Functional Encryption
Issues with Standard Inner Product Functional Encryption
Unbounded Inner Product Functional Encryption
Our construction
Technical Difficulties
Concurrent and Independent Work
Open problems



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.

Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.

Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (pk,msk).

I Encrypt(pk,x): Returns c .

I KeyGen(msk ,f ): Returns skf .

I Decrypt(skf ,c): Returns f (x).



FE example

msk

I want to receive encrypted emails.
I don’t want to be bothered with spam.

Decrypt and send to my colleague if urgent.

skfspam , skfurgentpk



FE example

msk

pk
skfspam , skfurgent

I don’t know what it is
but it’s spam!

Encpk(”Cheap RayBans!!!”)
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Security definitions

Oracles:
Setup()

LeftOrRight(·,·)
KeyDer(·)
Finalize(·)

No cheating!
f (x0) 6= f (x1)

LoR(x0,x1)

Enc(xb)

KeyDer(f )

skf



The First Inner Product Functional Encryption

ABDP15
Fixed n. F ≈ Zn

p, f~y ≈ ~y .

I Setup(λ): Pick ~s
$← Zn

p. Return g~s , ~s.

I Encrypt(g~s , ~x): Pick r
$← Zp. Return

g r , g~x ·
(
g~s
)r

= g r , g~x+r ·~s .

I KeyGen(~s, ~y): Return 〈~s, ~y〉.
I Decrypt(〈~s, ~y〉, (g r , g~x+r ·~s)): Compute

gγ = 〈g~x+r ·~s , ~y〉/ (g r )〈~s,~y〉

and solve the discrete logarithm to return γ.
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The key for y lets you compute 〈x, y〉 =⇒ one projection.

m independent keys =⇒ m projections.
Actual number of keys you can give
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Leakage

Say you have a ciphertext for vector x.
The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.
Actual number of keys you can give depends on plaintext
distribution.
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What if you want to receive vectors of various lengths?

You need multiple public keys.
What if you want to create subcategories between vectors?
More keys.
What if you don’t know the size of the vector ahead of time?
No great solutions.
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Solution: Unbounded Inner Product Functional Encryption

I No fixed size for vectors (ciphertexts or keys).

I One constant-size public-key.

I Vectors are maps from indices to scalars.

I Identity-based version allows for categorization.



UIPFE Variants

We introduce two unbounded functionalities:

I Strict UIPFE: Indices of ciphertext must match those of key.

I Permissive UIPFE: Indices of ciphertext must contain those of
key.
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Our construction

Permissive UIPFE: Setup

Choose a pairing group (G1,G2,GT , g1, g2, e) and a hash function
H into G2.
Pick a single scalar s

$← Zp.
Return g s

1 , s.
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Permissive UIPFE: Decrypt
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$← Zp. Return g s

1 , s.

I Encrypt(g s , (xi )i∈D): Pick r
$← Zp. Return (g r

1 , (ci )i∈D)
where

ci = g xi
T · e(g s

1 ,H(i)r ) ≈ g xi+rsi
T

I KeyGen(s, (yi )i∈D′): Return∏
i∈D′
H(i)−syi ≈ g

−〈~s,~y〉
2

You have a ciphertext (g r
1 , (ci )i∈D) and a key

∏
i∈D′ H(i)−syi

Compute

gγT = e

(
g r

1 ,
∏
i∈D′
H(i)−syi

)
·
∏
i∈D′

cyii

and recover γ.



Our construction

Permissive UIPFE

I Setup(λ): Pick s
$← Zp. Return g s

1 , s.

I Encrypt(g s , (xi )i∈D): Pick r
$← Zp. Return (g r

1 , (ci )i∈D)
where

ci = g xi
T · e(g s

1 ,H(i)r ) ≈ g xi+rsi
T

I KeyGen(s, (yi )i∈D′): Return∏
i∈D′
H(i)−syi ≈ g

−〈~s,~y〉
2

I Decrypt(
∏

i∈D′ H(i)−syi ≈ g
−〈~s,~y〉
2 , (g r

1 , (ci )i∈D)): Compute

gγT = e

(
g r

1 ,
∏
i∈D′
H(i)−syi

)
·
∏
i∈D′

cyii

and recover γ.



Technical Difficulties: Norms

||x0 − x1|| = 0 mod p 6=⇒ x0 = x1 mod p

Other UIPFE works bypass this by bounding individual
components.
This doesn’t work here.
We define a pseudonorm and impose an upper bound on it.
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In most (all?) IPFE schemes, keys are homomorphic:

f (α, sky , β, sky ′) = skαy+βy ′

This is typically fine by functionality.

But it becomes an issue in permissive UIPFE.
Need to adjust security definitions.
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Concurrent and Independent Work

Tomida and Takashima proposed UIPFE at ASIACRYPT18.

I No Random Oracles.

I Adaptive security.

I Only standard assumptions.

I Requires contiguous indices.

I No access control.

I Bigger keys, slower
operations.

Public Key Ciphertext Functional Key

TT18 28|G1| 7n|G1| 7n|G2|+ α

Ours |G1| |G1|+ n|GT | |G2|
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