
Partially Encrypted Machine Learning using
Functional Encryption
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Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.
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FE example

msk

I want to receive encrypted emails.
I don’t want to be bothered with spam.

Decrypt and send to my colleague if urgent.

skfspam , skfurgentpk



FE example

msk

pk
skfspam , skfurgent

I don’t know what it is
but it’s spam!

Encpk(”Cheap RayBans!!!”)
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Security definitions

pk

b?

No cheating!
f (x0) 6= f (x1)

LeftOrRight(x0,x1)

Enc(xb)
KeyDer(f )

skf
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Our contributions

I New Quadratic FE scheme;

I Python Implementation;

I Methodology for Thinking About Privacy in FE-ML;

I New Dataset;

I Collateral Learning Framework for Training Models in FE-ML.
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A New FE Scheme for Quadratic Forms

I Key skQ gets you ~xTQ~x from Enc(~x);

I Decryption 1.5× faster than State-of-the-Art;

I Uses pairings. Secure in Generic Group Model;

I All group-based computational FE schemes require a discrete
logarithm;

I Must ensure output has reasonably small entropy;

I All DLOGs are in base gT !

I We precompute tweaked Giant step of BSGS and store for
reuse.
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A Simple Model
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Leakage

Ciphertexts are for vectors ~x ∈ [0, 255]784.
A key for Q lets you compute one scalar ~xTQ~x .

More keys give you more scalars.
But your notion of privacy depends on the distributions on the ~x ’s.
10 scalars actually give a lot of information: [CFLS18] mount good
recovery attacks.
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Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many
keys you can give out.

What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it
ok? Which details matter?
We need to capture real-world concerns on real-world data
distributions.
We can draw inspiration from the cryptographic notion of
indistinguishibility.
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Defining Security for FE-ML



Collateral Learning
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Implementation

We provide a Python implementation using Charm with PBC.
We use a database for precomputed discrete logarithms.

Functional key generation 0.094s

Encryption time 12.1s

Evaluation time 2.97s

Discrete logarithms time 0.024s



Results: Influence of Output Size



Results: Influence of Adversarial Parameter



Open problems

I Bigger images.

I Richer FE.

I Trusting models.
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Recap: Our contributions

I New Quadratic FE scheme;

I Python Implementation;

I Methodology for Thinking About Privacy in FE-ML;

I New Dataset;

I Collateral Learning Framework for Training Models in FE-ML.
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