Partially Encrypted Machine Learning using Functional Encryption

Théo Ryffel1,2 Edouard Dufour-Sans1 Romain Gay1,3
Francis Bach2,1 David Pointcheval1,2

1École Normale Supérieure
2INRIA
3UC Berkeley

August 18, 2019
Table of Contents

Background
 Functional Encryption
 Security of Functional Encryption

Overview
 Our contributions

Basics of Functional Inference
 Our Scheme
 A Simple Model

Collateral learning
 Attacks on initial approach
 Defining practical security
 Collateral learning

Results and Future Work
 Implementation
 Results
 Open problems
Functional Encryption

Traditional PKE: all or nothing.
Functional Encryption

Traditional PKE: all or nothing.

- Have the key?
 Get the plaintext.

- Don’t have the key?
 Get nothing.
Functional Encryption

Traditional PKE: all or nothing.

- Have the key?
 Get the plaintext.

- Don’t have the key?
 Get nothing.

Functional Encryption: A new paradigm.
Functional Encryption

Traditional PKE: all or nothing.
- Have the key?
 Get the plaintext.
- Don’t have the key?
 Get nothing.

Functional Encryption: A new paradigm.
Get a function of the cleartext.
Functional Encryption

Traditional PKE: all or nothing.
- Have the key?
 Get the plaintext.
- Don’t have the key?
 Get nothing.

Functional Encryption: A new paradigm.
Get a function of the cleartext.
Function depends on the key.
I want to receive encrypted emails.
I don’t want to be bothered with spam.
Decrypt and send to my colleague if urgent.
I don’t know what it is but it’s spam!

\[Enc_{pk}(”\text{Cheap RayBans}!!!”) \]
Security definitions

\[
\begin{align*}
\text{LeftOrRight}(x_0, x_1) & \quad \text{Enc}(x_b) \\
\text{KeyDer}(f) & \quad \text{sk}_f
\end{align*}
\]
No cheating!
\(f(x_0) \neq f(x_1) \)
Table of Contents

Background
 Functional Encryption
 Security of Functional Encryption

Overview
 Our contributions

Basics of Functional Inference
 Our Scheme
 A Simple Model

Collateral learning
 Attacks on initial approach
 Defining practical security
 Collateral learning

Results and Future Work
 Implementation
 Results
 Open problems
Our contributions

- New Quadratic FE scheme;
- Python Implementation;
- Methodology for Thinking About Privacy in FE-ML;
- New Dataset;
- Collateral Learning Framework for Training Models in FE-ML.
A New FE Scheme for Quadratic Forms

- Key sk_Q gets you $\bar{x}^T Q \bar{x}$ from $Enc(\bar{x})$;
- Decryption $1.5 \times$ faster than State-of-the-Art;
- Uses pairings. Secure in Generic Group Model;
A New FE Scheme for Quadratic Forms

- Key sk_Q gets you $\vec{x}^T Q \vec{x}$ from $Enc(\vec{x})$;
- Decryption $1.5 \times$ faster than State-of-the-Art;
- Uses pairings. Secure in Generic Group Model;
- All group-based computational FE schemes require a discrete logarithm;
- Must ensure output has reasonably small entropy;
A New FE Scheme for Quadratic Forms

- Key sk_Q gets you $\bar{x}^T Q \bar{x}$ from $Enc(\bar{x})$;
- Decryption $1.5 \times$ faster than State-of-the-Art;
- Uses pairings. Secure in Generic Group Model;
- All group-based computational FE schemes require a discrete logarithm;
- Must ensure output has reasonably small entropy;
- All DLOGs are in base g_T!
- We precompute tweaked Giant step of BSGS and store for reuse.
A Simple Model

Input layer (Ciphertext) Hidden layer (Pairings) Output layer

Score for 0 Score for 9

Encrypted pixel #1

Encrypted pixel #2

Encrypted pixel #3

Encrypted pixel #782

Encrypted pixel #783

Encrypted pixel #784
Leakage

Ciphertexts are for vectors $\vec{x} \in [0, 255]^{784}$. A key for Q lets you compute one scalar $\vec{x}^T Q \vec{x}$. More keys give you more scalars. But your notion of privacy depends on the distributions on the \vec{x}'s. 10 scalars actually give a lot of information: [CFLS18] mount good recovery attacks.
Ciphertexts are for vectors $\overline{x} \in [0, 255]^{784}$. A key for Q lets you compute one scalar $\overline{x}^T Q \overline{x}$. More keys give you more scalars.
Ciphertexts are for vectors $\vec{x} \in [0, 255]^{784}$. A key for Q lets you compute one scalar $\vec{x}^T Q \vec{x}$. More keys give you more scalars. But your notion of privacy depends on the distributions on the \vec{x}’s.
Ciphertexts are for vectors $\vec{x} \in [0, 255]^{784}$. A key for Q lets you compute one scalar $\vec{x}^T Q \vec{x}$. More keys give you more scalars. But your notion of privacy depends on the distributions on the \vec{x}’s. 10 scalars actually give a lot of information: [CFLS18] mount good recovery attacks.
Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many keys you can give out.

What information are we trying to protect? Is a decent reconstruction of a MNIST image bad for privacy? Is it ok? Which details matter?

We need to capture real-world concerns on real-world data distributions.

We can draw inspiration from the cryptographic notion of indistinguishibility.
Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many keys you can give out. What information are we trying to protect?
Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many keys you can give out.
What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it ok? Which details matter?
Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many keys you can give out.
What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it ok? Which details matter?
We need to capture real-world concerns on real-world data distributions.
Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many keys you can give out.
What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it ok? Which details matter?
We need to capture real-world concerns on real-world data distributions.
We can draw inspiration from the cryptographic notion of indistinguishibility.
Defining Security for FE-ML
Collateral Learning
We provide a Python implementation using Charm with PBC. We use a database for precomputed discrete logarithms.

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional key generation</td>
<td>0.094s</td>
</tr>
<tr>
<td>Encryption time</td>
<td>12.1s</td>
</tr>
<tr>
<td>Evaluation time</td>
<td>2.97s</td>
</tr>
<tr>
<td>Discrete logarithms time</td>
<td>0.024s</td>
</tr>
</tbody>
</table>
Results: Influence of Output Size
Results: Influence of Adversarial Parameter
Open problems

- Bigger images.
Open problems

- Bigger images.
- Richer FE.
Open problems

- Bigger images.
- Richer FE.
- Trusting models.
Recap: Our contributions

- New Quadratic FE scheme;
- Python Implementation;
- Methodology for Thinking About Privacy in FE-ML;
- New Dataset;
- Collateral Learning Framework for Training Models in FE-ML.