
Partially Encrypted Machine Learning using
Functional Encryption

Théo Ryffel1,2 Edouard Dufour-Sans 1 Romain Gay 1,3

Francis Bach 2,1 David Pointcheval 1,2

1École Normale Supérieure

2INRIA

3UC Berkeley

August 18, 2019



Table of Contents
Background

Functional Encryption
Security of Functional Encryption

Overview
Our contributions

Basics of Functional Inference
Our Scheme
A Simple Model

Collateral learning
Attacks on initial approach
Defining practical security
Collateral learning

Results and Future Work
Implementation
Results
Open problems



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.

Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.

Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key?
Get the plaintext.

I Don’t have the key?
Get nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



FE example

msk

I want to receive encrypted emails.
I don’t want to be bothered with spam.

Decrypt and send to my colleague if urgent.

skfspam , skfurgentpk



FE example

msk

pk
skfspam , skfurgent

I don’t know what it is
but it’s spam!

Encpk(”Cheap RayBans!!!”)



Security definitions

pk

b?

LeftOrRight(x0,x1)

Enc(xb)
KeyDer(f )

skf



Security definitions

pk

b?

No cheating!
f (x0) 6= f (x1)

LeftOrRight(x0,x1)

Enc(xb)
KeyDer(f )

skf



Table of Contents
Background

Functional Encryption
Security of Functional Encryption

Overview
Our contributions

Basics of Functional Inference
Our Scheme
A Simple Model

Collateral learning
Attacks on initial approach
Defining practical security
Collateral learning

Results and Future Work
Implementation
Results
Open problems



Our contributions

I New Quadratic FE scheme;

I Python Implementation;

I Methodology for Thinking About Privacy in FE-ML;

I New Dataset;

I Collateral Learning Framework for Training Models in FE-ML.



Table of Contents
Background

Functional Encryption
Security of Functional Encryption

Overview
Our contributions

Basics of Functional Inference
Our Scheme
A Simple Model

Collateral learning
Attacks on initial approach
Defining practical security
Collateral learning

Results and Future Work
Implementation
Results
Open problems



A New FE Scheme for Quadratic Forms

I Key skQ gets you ~xTQ~x from Enc(~x);

I Decryption 1.5× faster than State-of-the-Art;

I Uses pairings. Secure in Generic Group Model;

I All group-based computational FE schemes require a discrete
logarithm;

I Must ensure output has reasonably small entropy;

I All DLOGs are in base gT !

I We precompute tweaked Giant step of BSGS and store for
reuse.



A New FE Scheme for Quadratic Forms

I Key skQ gets you ~xTQ~x from Enc(~x);

I Decryption 1.5× faster than State-of-the-Art;

I Uses pairings. Secure in Generic Group Model;

I All group-based computational FE schemes require a discrete
logarithm;

I Must ensure output has reasonably small entropy;

I All DLOGs are in base gT !

I We precompute tweaked Giant step of BSGS and store for
reuse.



A New FE Scheme for Quadratic Forms

I Key skQ gets you ~xTQ~x from Enc(~x);

I Decryption 1.5× faster than State-of-the-Art;

I Uses pairings. Secure in Generic Group Model;

I All group-based computational FE schemes require a discrete
logarithm;

I Must ensure output has reasonably small entropy;

I All DLOGs are in base gT !

I We precompute tweaked Giant step of BSGS and store for
reuse.



A Simple Model

Encrypted pixel #1

Encrypted pixel #2

Encrypted pixel #3

Encrypted pixel #782

Encrypted pixel #783

Encrypted pixel #784
...

·2

·2

·2

·2

...

...
dlog

dlog

...

Score for 0

Score for 9

...
Input
layer

(Ciphertext)

Hidden
layer

(Pairings)

Output
layer



Table of Contents
Background

Functional Encryption
Security of Functional Encryption

Overview
Our contributions

Basics of Functional Inference
Our Scheme
A Simple Model

Collateral learning
Attacks on initial approach
Defining practical security
Collateral learning

Results and Future Work
Implementation
Results
Open problems



Leakage

Ciphertexts are for vectors ~x ∈ [0, 255]784.
A key for Q lets you compute one scalar ~xTQ~x .

More keys give you more scalars.
But your notion of privacy depends on the distributions on the ~x ’s.
10 scalars actually give a lot of information: [CFLS18] mount good
recovery attacks.



Leakage

Ciphertexts are for vectors ~x ∈ [0, 255]784.
A key for Q lets you compute one scalar ~xTQ~x .
More keys give you more scalars.

But your notion of privacy depends on the distributions on the ~x ’s.
10 scalars actually give a lot of information: [CFLS18] mount good
recovery attacks.



Leakage

Ciphertexts are for vectors ~x ∈ [0, 255]784.
A key for Q lets you compute one scalar ~xTQ~x .
More keys give you more scalars.
But your notion of privacy depends on the distributions on the ~x ’s.

10 scalars actually give a lot of information: [CFLS18] mount good
recovery attacks.



Leakage

Ciphertexts are for vectors ~x ∈ [0, 255]784.
A key for Q lets you compute one scalar ~xTQ~x .
More keys give you more scalars.
But your notion of privacy depends on the distributions on the ~x ’s.
10 scalars actually give a lot of information: [CFLS18] mount good
recovery attacks.



Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many
keys you can give out.

What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it
ok? Which details matter?
We need to capture real-world concerns on real-world data
distributions.
We can draw inspiration from the cryptographic notion of
indistinguishibility.



Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many
keys you can give out.
What information are we trying to protect?

Is a decent reconstruction of a MNIST image bad for privacy? Is it
ok? Which details matter?
We need to capture real-world concerns on real-world data
distributions.
We can draw inspiration from the cryptographic notion of
indistinguishibility.



Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many
keys you can give out.
What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it
ok? Which details matter?

We need to capture real-world concerns on real-world data
distributions.
We can draw inspiration from the cryptographic notion of
indistinguishibility.



Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many
keys you can give out.
What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it
ok? Which details matter?
We need to capture real-world concerns on real-world data
distributions.

We can draw inspiration from the cryptographic notion of
indistinguishibility.



Defining Security for FE-ML

Security definition of FE isn’t very helpful for deciding how many
keys you can give out.
What information are we trying to protect?
Is a decent reconstruction of a MNIST image bad for privacy? Is it
ok? Which details matter?
We need to capture real-world concerns on real-world data
distributions.
We can draw inspiration from the cryptographic notion of
indistinguishibility.



Defining Security for FE-ML



Collateral Learning



Table of Contents
Background

Functional Encryption
Security of Functional Encryption

Overview
Our contributions

Basics of Functional Inference
Our Scheme
A Simple Model

Collateral learning
Attacks on initial approach
Defining practical security
Collateral learning

Results and Future Work
Implementation
Results
Open problems



Implementation

We provide a Python implementation using Charm with PBC.
We use a database for precomputed discrete logarithms.

Functional key generation 0.094s

Encryption time 12.1s

Evaluation time 2.97s

Discrete logarithms time 0.024s



Results: Influence of Output Size



Results: Influence of Adversarial Parameter



Open problems

I Bigger images.

I Richer FE.

I Trusting models.



Open problems

I Bigger images.

I Richer FE.

I Trusting models.



Open problems

I Bigger images.

I Richer FE.

I Trusting models.



Recap: Our contributions

I New Quadratic FE scheme;

I Python Implementation;

I Methodology for Thinking About Privacy in FE-ML;

I New Dataset;

I Collateral Learning Framework for Training Models in FE-ML.


	Background
	Functional Encryption
	Security of Functional Encryption

	Overview
	Our contributions

	Basics of Functional Inference
	Our Scheme
	A Simple Model

	Collateral learning
	Attacks on initial approach
	Defining practical security
	Collateral learning

	Results and Future Work
	Implementation
	Results
	Open problems

	Recap

