Inner Product Functional Encryption

Edouard Dufour Sans

January 25, 2018

Table of Contents

Introduction

Functional Encryption Security definitions Notations

The Power of Inner Products

Descriptive statistics Machine Learning Practical security

The first practical scheme: ABDP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Presentation

Correctness

A fully secure scheme: ALS

Presentation

Correctness

Security

Traditional PKE: all or nothing.

Traditional PKE: all or nothing.

 Have the key? Get the plaintext.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Traditional PKE: all or nothing.

- Have the key? Get the plaintext.
- Don't have the key? Get nothing.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Traditional PKE: all or nothing.

- Have the key? Get the plaintext.
- Don't have the key? Get nothing.

Functional Encryption: **A new** paradigm.

Traditional PKE: all or nothing.

- Have the key? Get the plaintext.
- Don't have the key? Get nothing.

Functional Encryption: **A new paradigm**. Get a *function* of the cleartext.

Traditional PKE: all or nothing.

- Have the key? Get the plaintext.
- Don't have the key? Get nothing.

Functional Encryption: **A new paradigm**. Get a *function* of the cleartext. **Function depends on the key**.

Four algorithms:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Four algorithms:

- Setup
- Encrypt
- KeyGen
- Decrypt

Four algorithms:

• Setup(λ): Returns (ek, msk).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Encrypt
- KeyGen
- Decrypt

Four algorithms:

• Setup(λ): Returns (ek, msk).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Encrypt(*ek*,*x*): Returns *c*.
- KeyGen
- Decrypt

Four algorithms:

- Setup(λ): Returns (ek, msk).
- Encrypt(ek,x): Returns c.
- KeyGen(*msk*, *f*): Returns *sk_f*.

Decrypt

Four algorithms:

- Setup(λ): Returns (ek, msk).
- Encrypt(ek,x): Returns c.
- KeyGen(*msk*, *f*): Returns *sk_f*.
- Decrypt(sk_f, c): Returns f(x).

Four algorithms:

- Setup(λ): Returns (ek, msk).
- Encrypt(ek,x): Returns c.
- KeyGen(*msk*, *f*): Returns *sk_f*.
- Decrypt(sk_f, c): Returns f(x).

Function hiding.

Four algorithms:

- Setup(λ): Returns (ek, msk).
- Encrypt(ek,x): Returns c.
- KeyGen(*msk*, *f*): Returns *sk_f*.
- Decrypt(sk_f, c): Returns f(x).

Function hiding (or not).

Four algorithms:

- Setup(λ): Returns (ek, msk).
- Encrypt(ek,x): Returns c.
- KeyGen(*msk*, *f*): Returns *sk_f*.
- Decrypt(sk_f, c): Returns f(x).

Function hiding (or *not*). $f \in \mathcal{F}$: the *functionality*.

Can we simply re-use the definitions of standard SE or PKE?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Can we simply re-use the definitions of standard SE or PKE? $\mathbf{No}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Can we simply re-use the definitions of standard SE or PKE? No. Ear any non trivial $f \rightarrow distinguish by submitting vs. vs. with$

For any non-trivial $f \implies$ distinguish by submitting x_0, x_1 with $f(x_0) \neq f(x_1)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can we simply re-use the definitions of standard SE or PKE? No.

For any non-trivial $f \implies$ distinguish by submitting x_0, x_1 with $f(x_0) \neq f(x_1)$. Would not be a useful definition.

Indistinguishibility-Based Game

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

Initialize: Run the setup and send the public key.

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

- Initialize: Run the setup and send the public key.
- ► KeyDer: Run KeyGen and give the decryption key.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

- Initialize: Run the setup and send the public key.
- ► KeyDer: Run KeyGen and give the decryption key.
- LeftOrRight: Receive (x_0, x_1) , return Encrypt (ek, x_b) .

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

- Initialize: Run the setup and send the public key.
- ► KeyDer: Run KeyGen and give the decryption key.
- LeftOrRight: Receive (x_0, x_1) , return Encrypt (ek, x_b) .
- Finalize: If key requests were legitimate, check validity of guess.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

- Initialize: Run the setup and send the public key.
- ► KeyDer: Run KeyGen and give the decryption key.
- LeftOrRight: Receive (x_0, x_1) , return Encrypt (ek, x_b) .
- Finalize: If key requests were legitimate, check validity of guess.

One query to LeftOrRight is enough.

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

- Initialize: Run the setup and send the public key.
- ► KeyDer: Run KeyGen and give the decryption key.
- LeftOrRight: Receive (x_0, x_1) , return Encrypt (ek, x_b) .
- Finalize: If key requests were legitimate, check validity of guess.

One query to LeftOrRight is enough.

Requests were illegitimate if for some f queries to KeyDer, $f(x_0) \neq f(x_1)$.

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

- Initialize: Run the setup and send the public key.
- ► KeyDer: Run KeyGen and give the decryption key.
- LeftOrRight: Receive (x_0, x_1) , return Encrypt (ek, x_b) .
- Finalize: If key requests were legitimate, check validity of guess.

One query to LeftOrRight is enough.

Requests were illegitimate if for some f queries to KeyDer, $f(x_0) \neq f(x_1)$.

Selective game: Adversary must query LeftOrRight first.

Adaptive game: No such constraint.

Notations

- Brackets: $[x] = g^x$.
- Matrices and brackets:

$$\begin{bmatrix} \begin{pmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{d1} & \dots & x_{dn} \end{pmatrix} = \begin{pmatrix} [x_{11}] & \dots & [x_{1n}] \\ \vdots & \ddots & \vdots \\ [x_{d1}] & \dots & [x_{dn}] \end{pmatrix}$$

- We encrypt vectors \mathbf{x} , and give keys for vectors \mathbf{y} . We conflate $f_{\mathbf{y}} : \mathbf{x} \to \sum_{i=1}^{n} x_i y_i$ and \mathbf{y} .
- Scalar x, vector x and matrix X.

Table of Contents

Introductior

Functional Encryption Security definitions Notations

The Power of Inner Products

Descriptive statistics Machine Learning Practical security

The first practical scheme: ABDP Presentation Correctness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A fully secure scheme: ALS

- Presentation Correctness
- Security

The Power of Inner Products

We will work towards constructing schemes for the inner product functionality.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Power of Inner Products

We will work towards constructing schemes for the inner product functionality. Is this a useful primitive?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Descriptive statistics

Averages.

(4日) (個) (目) (目) (目) (の)

Descriptive statistics

- Averages.
- Weighted averages.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Descriptive statistics

- Averages.
- Weighted averages.
- Standard deviation.

Descriptive statistics

- Averages.
- Weighted averages.
- Standard deviation (if we encrypt the squares).

Machine learning: linear regression

Predict t (e.g. income) from \boldsymbol{x} (e.g. housing data about the family).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Machine learning: linear regression

Predict t (e.g. income) from \boldsymbol{x} (e.g. housing data about the family).

A somewhat naive model:

$$\begin{array}{ll} t \approx & \sum_{i=1}^n x_i y_i \\ \approx & \langle \mathbf{x}, \mathbf{y} \rangle \end{array}$$

Machine learning: linear regression

Predict t (e.g. income) from \mathbf{x} (e.g. housing data about the family).

A somewhat naive model:

$$\begin{array}{ll} t \approx & \sum_{i=1}^n x_i y_i \\ \approx & \langle \mathbf{x}, \mathbf{y} \rangle \end{array}$$

Works very well for some (basic) problems!

Machine learning: linear classification

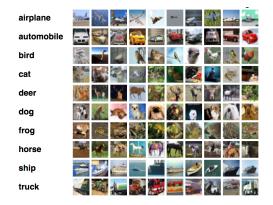


Figure: The CIFAR10 dataset. Source: https://www.cs.toronto.edu/~kriz/cifar.html

Machine learning: linear classification

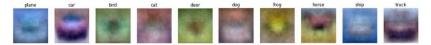


Figure: CIFAR10 linear classifiers as images. Source: http://cs231n.github.io/linear-classify/

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The key for y lets you compute $\langle \mathbf{x}, \mathbf{y} \rangle \implies$ one projection.

The key for y lets you compute $\langle \mathbf{x}, \mathbf{y} \rangle \implies$ one projection. m independent keys $\implies m$ projections.

The key for y lets you compute $\langle \mathbf{x}, \mathbf{y} \rangle \implies$ one projection. m independent keys $\implies m$ projections. Actual number of keys you can give?

Leakage

The key for y lets you compute $\langle \mathbf{x}, \mathbf{y} \rangle \implies$ one projection. m independent keys $\implies m$ projections. Actual number of keys you can give depends on plaintext distribution.

Table of Contents

Introduction

Functional Encryption Security definitions Notations

The Power of Inner Products

Descriptive statistics Machine Learning Practical security

The first practical scheme: ABDP Presentation Correctness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A fully secure scheme: ALS Presentation Correctness Security

ABDP15 Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

ABDP15

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- Setup
- Encrypt
- KeyGen
- Decrypt

ABDP15

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

• Setup(λ): Pick $\mathbf{s} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_{p}^{n}$. Return $[\mathbf{s}], \mathbf{s}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Encrypt
- KeyGen
- Decrypt

ABDP15

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- Setup(λ): Pick $\mathbf{s} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_p^n$. Return $[\mathbf{s}], \mathbf{s}$.
- ► Encrypt([**s**], **x**): Pick $r \stackrel{\$}{\leftarrow} Z_{\rho}$. Return [r], [**x**] · [**s**]^r = [r], [**x** + r**s**].

- KeyGen
- Decrypt

ABDP15

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- Setup(λ): Pick $\mathbf{s} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_p^n$. Return $[\mathbf{s}], \mathbf{s}$.
- Encrypt([**s**], **x**): Pick $r \stackrel{s}{\leftarrow} Z_p$. Return $[r], [\mathbf{x} + r\mathbf{s}]$.

- KeyGen(s, y): Return $\langle s, y \rangle$.
- Decrypt

ABDP15

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- Setup(λ): Pick $\mathbf{s} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathbb{Z}_p^n$. Return $[\mathbf{s}], \mathbf{s}$.
- Encrypt([**s**], **x**): Pick $r \stackrel{s}{\leftarrow} Z_p$. Return $[r], [\mathbf{x} + r\mathbf{s}]$.
- KeyGen(s, y): Return $\langle s, y \rangle$.
- Decrypt((s, y), ([r], [x + rs])): Compute

$$[\gamma] = [\mathbf{x} + r\mathbf{s}]^{\mathsf{T}} \cdot \mathbf{y} / [r]^{\langle \mathbf{s}, \mathbf{y} \rangle}$$

and solve the discrete logarithm to return γ .

Correctness

► Decrypt($\langle \mathbf{s}, \mathbf{y} \rangle$, ([r], [$\mathbf{x} + r\mathbf{s}$])): Compute [γ] = [$\mathbf{x} + r\mathbf{s}$]^T · $\mathbf{y}/[r]^{\langle \mathbf{s}, \mathbf{y} \rangle}$

and solve the discrete logarithm to return $\gamma.$

Proof.

On the black board, or check the paper.

Table of Contents

Introduction

Functional Encryption Security definitions Notations

The Power of Inner Products

Descriptive statistics Machine Learning Practical security

The first practical scheme: ABDP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Presentation Correctness

A fully secure scheme: ALS

Presentation Correctness Security

ALS16 Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_{p}^{n}$, $f_{\mathbf{y}} \approx \mathbf{y}$.

ALS16

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- Setup
- Encrypt
- KeyGen
- Decrypt

ALS16

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

► Setup(λ): Pick $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, $\mathbf{S} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{n \times 2}$. Return ([a], [Sa]), (a, S).

- Encrypt
- KeyGen
- Decrypt

ALS16

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- ► Setup(λ): Pick $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, $\mathbf{S} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{n \times 2}$. Return ([a], [Sa]), (a, S).
- Encrypt(([a], [Sa]), x): Pick $r \stackrel{\hspace{0.1em}{\leftarrow}}{\leftarrow} Z_p$. Return [ar], [x + Sar].

- KeyGen
- Decrypt

ALS16

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- ► Setup(λ): Pick $\mathbf{a} \stackrel{s}{\leftarrow} \mathbb{Z}^2_p$, $\mathbf{S} \stackrel{s}{\leftarrow} \mathbb{Z}^{n \times 2}_p$. Return ([a], [Sa]), (a, S).
- ► Encrypt(([a], [Sa]), x): Pick $r \stackrel{\$}{\leftarrow} Z_p$. Return [ar], [x + Sar].

- KeyGen(S, y): Return S^Ty.
- Decrypt

ALS16

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- ► Setup(λ): Pick $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}^2_p$, $\mathbf{S} \stackrel{\$}{\leftarrow} \mathbb{Z}^{n \times 2}_p$. Return ([a], [Sa]), (a, S).
- ► Encrypt(([a], [Sa]), x): Pick $r \stackrel{\$}{\leftarrow} Z_p$. Return [ar], [x + Sar].
- KeyGen(S, y): Return S^Ty.
- Decrypt(S^Ty, ([ar], [x + Sar])): Compute

$$[\boldsymbol{\gamma}] = [\mathbf{x} + \mathbf{S}\mathbf{a}r]^{\mathsf{T}} \cdot \mathbf{y} - [\mathbf{a}r]^{\mathsf{T}} \cdot \mathbf{S}^{\mathsf{T}}\mathbf{y}$$

and solve the discrete logarithm to return γ .

Correctness

Compute

$$[\gamma] = [(\mathbf{x} + \mathbf{S}\mathbf{a}r)^{\mathsf{T}}\mathbf{y} - (\mathbf{a}r)^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{y}]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and solve the discrete logarithm to return $\gamma.$

Proof.

On the black board (or check the paper).

Security

ALS16

Fixed *n*. $\mathcal{F} \approx \mathbb{Z}_p^n$, $f_{\mathbf{y}} \approx \mathbf{y}$.

- ► Setup(λ): Pick $\mathbf{a} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^2$, $\mathbf{S} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^{n \times 2}$. Return ([a], [Sa]), (a, S).
- ► Encrypt(([a], [Sa]), x): Pick $r \stackrel{\$}{\leftarrow} Z_p$. Return [ar], [x + Sar].
- KeyGen(S, y): Return S^Ty.
- Decrypt(S^Ty, ([ar], [x + Sar])): Compute

$$[\boldsymbol{\gamma}] = [(\mathbf{x} + \mathbf{S}\mathbf{a}r)^{\mathsf{T}}\mathbf{y} - (\mathbf{a}r)^{\mathsf{T}}\mathbf{S}^{\mathsf{T}}\mathbf{y}]$$

and solve the discrete logarithm to return $\boldsymbol{\gamma}.$

Proof.

On the black board (or check Appendix A in AGR+17).

References

- M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval. Simple functional encryption schemes for inner products. PKC 2015.
- M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input Inner-Product Functional Encryption from Pairings. EUROCRYPT 2017.
- S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products, from standard assumptions. CRYPTO 2016.
- 4. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. TCC 2011.
- A. O'Neill. Definitional Issues in Functional Encryption. Cryptology ePrint Archive, Report 2010/556.