
Inner Product Functional Encryption

Edouard Dufour Sans

January 25, 2018



Table of Contents

Introduction
Functional Encryption
Security definitions
Notations

The Power of Inner Products
Descriptive statistics
Machine Learning
Practical security

The first practical scheme: ABDP
Presentation
Correctness

A fully secure scheme: ALS
Presentation
Correctness
Security



Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.

Get a function of the cleartext.
Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.

Function depends on the key.



Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.



Functional Encryption: Formal definition

Four algorithms:

I Setup

(λ): Returns (ek,msk).

I Encrypt

(ek ,x): Returns c .

I KeyGen

(msk ,f ): Returns skf .

I Decrypt

(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup

(λ): Returns (ek ,msk).

I Encrypt

(ek ,x): Returns c .

I KeyGen

(msk ,f ): Returns skf .

I Decrypt

(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (ek ,msk).

I Encrypt

(ek ,x): Returns c .

I KeyGen

(msk ,f ): Returns skf .

I Decrypt

(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (ek ,msk).

I Encrypt(ek ,x): Returns c .

I KeyGen

(msk ,f ): Returns skf .

I Decrypt

(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (ek ,msk).

I Encrypt(ek ,x): Returns c .

I KeyGen(msk ,f ): Returns skf .

I Decrypt

(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (ek ,msk).

I Encrypt(ek ,x): Returns c .

I KeyGen(msk ,f ): Returns skf .

I Decrypt(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (ek ,msk).

I Encrypt(ek ,x): Returns c .

I KeyGen(msk ,f ): Returns skf .

I Decrypt(skf ,c): Returns f (x).

Function hiding.

f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (ek ,msk).

I Encrypt(ek ,x): Returns c .

I KeyGen(msk ,f ): Returns skf .

I Decrypt(skf ,c): Returns f (x).

Function hiding (or not).

f ∈ F : the functionality.



Functional Encryption: Formal definition

Four algorithms:

I Setup(λ): Returns (ek ,msk).

I Encrypt(ek ,x): Returns c .

I KeyGen(msk ,f ): Returns skf .

I Decrypt(skf ,c): Returns f (x).

Function hiding (or not).
f ∈ F : the functionality.



Security definitions

Can we simply re-use the definitions of standard SE or PKE?

.
For any non-trivial f =⇒ distinguish by submitting x0, x1 with
f (x0) 6= f (x1).
Would not be a useful definition.



Security definitions

Can we simply re-use the definitions of standard SE or PKE?
No.

For any non-trivial f =⇒ distinguish by submitting x0, x1 with
f (x0) 6= f (x1).
Would not be a useful definition.



Security definitions

Can we simply re-use the definitions of standard SE or PKE?
No.
For any non-trivial f =⇒ distinguish by submitting x0, x1 with
f (x0) 6= f (x1).

Would not be a useful definition.



Security definitions

Can we simply re-use the definitions of standard SE or PKE?
No.
For any non-trivial f =⇒ distinguish by submitting x0, x1 with
f (x0) 6= f (x1).
Would not be a useful definition.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.

Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).

Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.



Notations

I Brackets: [x ] = g x .

I Matrices and brackets:
x11 . . . x1n

...
. . .

...
xd1 . . . xdn


 =

[x11] . . . [x1n]
...

. . .
...

[xd1] . . . [xdn]


I We encrypt vectors x, and give keys for vectors y. We

conflate fy : x→
∑n

i=1 xiyi and y.

I Scalar x , vector x and matrix X.



Table of Contents

Introduction
Functional Encryption
Security definitions
Notations

The Power of Inner Products
Descriptive statistics
Machine Learning
Practical security

The first practical scheme: ABDP
Presentation
Correctness

A fully secure scheme: ALS
Presentation
Correctness
Security



The Power of Inner Products

We will work towards constructing schemes for the inner product
functionality.

Is this a useful primitive?



The Power of Inner Products

We will work towards constructing schemes for the inner product
functionality.
Is this a useful primitive?



Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation.



Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation.



Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation.



Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation (if we encrypt the squares).



Machine learning: linear regression

Predict t (e.g. income) from x (e.g. housing data about the
family).

A somewhat naive model:

t ≈
∑n

i=1 xiyi

≈ 〈x, y〉

Works very well for some (basic) problems!



Machine learning: linear regression

Predict t (e.g. income) from x (e.g. housing data about the
family).
A somewhat naive model:

t ≈
∑n

i=1 xiyi

≈ 〈x, y〉

Works very well for some (basic) problems!



Machine learning: linear regression

Predict t (e.g. income) from x (e.g. housing data about the
family).
A somewhat naive model:

t ≈
∑n

i=1 xiyi

≈ 〈x, y〉

Works very well for some (basic) problems!



Machine learning: linear classification

Figure: The CIFAR10 dataset.
Source: https://www.cs.toronto.edu/∼kriz/cifar.html



Machine learning: linear classification

Figure: CIFAR10 linear classifiers as images.
Source: http://cs231n.github.io/linear-classify/



Leakage

The key for y lets you compute 〈x, y〉 =⇒ one projection.

m independent keys =⇒ m projections.
Actual number of keys you can give



Leakage

The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.

Actual number of keys you can give



Leakage

The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.
Actual number of keys you can give?



Leakage

The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.
Actual number of keys you can give depends on plaintext
distribution.



Table of Contents

Introduction
Functional Encryption
Security definitions
Notations

The Power of Inner Products
Descriptive statistics
Machine Learning
Practical security

The first practical scheme: ABDP
Presentation
Correctness

A fully secure scheme: ALS
Presentation
Correctness
Security



Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

([s], x): Pick r
$← Zp. Return [r ], [x+ rs].

I KeyGen

(s, y): Return 〈s, y〉.

I Decrypt

(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.



Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

([s], x): Pick r
$← Zp. Return [r ], [x+ rs].

I KeyGen

(s, y): Return 〈s, y〉.

I Decrypt

(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.



Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick s $← Zn
p. Return [s], s.

I Encrypt

([s], x): Pick r
$← Zp. Return [r ], [x+ rs].

I KeyGen

(s, y): Return 〈s, y〉.

I Decrypt

(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.



Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick s $← Zn
p. Return [s], s.

I Encrypt([s], x): Pick r
$← Zp. Return

[r ], [x] · [s]r = [r ], [x+ rs].

I KeyGen

(s, y): Return 〈s, y〉.

I Decrypt

(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.



Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick s $← Zn
p. Return [s], s.

I Encrypt([s], x): Pick r
$← Zp. Return [r ], [x+ rs].

I KeyGen(s, y): Return 〈s, y〉.
I Decrypt

(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.



Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick s $← Zn
p. Return [s], s.

I Encrypt([s], x): Pick r
$← Zp. Return [r ], [x+ rs].

I KeyGen(s, y): Return 〈s, y〉.
I Decrypt(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.



Correctness

I Decrypt(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.

Proof.
On the black board, or check the paper.



Table of Contents

Introduction
Functional Encryption
Security definitions
Notations

The Power of Inner Products
Descriptive statistics
Machine Learning
Practical security

The first practical scheme: ABDP
Presentation
Correctness

A fully secure scheme: ALS
Presentation
Correctness
Security



Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen

(S, y): Return Sᵀy.

I Decrypt

(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.



Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen

(S, y): Return Sᵀy.

I Decrypt

(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.



Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick a $← Z2
p, S

$← Zn×2
p . Return ([a], [Sa]), (a,S).

I Encrypt

(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen

(S, y): Return Sᵀy.

I Decrypt

(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.



Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick a $← Z2
p, S

$← Zn×2
p . Return ([a], [Sa]), (a,S).

I Encrypt(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen

(S, y): Return Sᵀy.

I Decrypt

(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.



Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick a $← Z2
p, S

$← Zn×2
p . Return ([a], [Sa]), (a,S).

I Encrypt(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen(S, y): Return Sᵀy.

I Decrypt

(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.



Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick a $← Z2
p, S

$← Zn×2
p . Return ([a], [Sa]), (a,S).

I Encrypt(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen(S, y): Return Sᵀy.

I Decrypt(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.



Correctness

Compute

[γ] = [(x+ Sar)ᵀy − (ar)ᵀSᵀy]

and solve the discrete logarithm to return γ.

Proof.
On the black board (or check the paper).



Security

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick a $← Z2
p, S

$← Zn×2
p . Return ([a], [Sa]), (a,S).

I Encrypt(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen(S, y): Return Sᵀy.

I Decrypt(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [(x+ Sar)ᵀy − (ar)ᵀSᵀy]

and solve the discrete logarithm to return γ.

Proof.
On the black board (or check Appendix A in AGR+17).



References

1. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval.
Simple functional encryption schemes for inner products. PKC
2015.

2. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input
Inner-Product Functional Encryption from Pairings.
EUROCRYPT 2017.

3. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional
encryption for inner products, from standard assumptions.
CRYPTO 2016.

4. D. Boneh, A. Sahai, and B. Waters. Functional encryption:
Definitions and challenges. TCC 2011.

5. A. O’Neill. Definitional Issues in Functional Encryption.
Cryptology ePrint Archive, Report 2010/556.


	Introduction
	Functional Encryption
	Security definitions
	Notations

	The Power of Inner Products
	Descriptive statistics
	Machine Learning
	Practical security

	The first practical scheme: ABDP
	Presentation
	Correctness

	A fully secure scheme: ALS
	Presentation
	Correctness
	Security


