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Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.
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Functional Encryption: Formal definition

Four algorithms:

I Setup

(λ): Returns (ek,msk).

I Encrypt

(ek ,x): Returns c .

I KeyGen

(msk ,f ): Returns skf .

I Decrypt

(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.
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.
For any non-trivial f =⇒ distinguish by submitting x0, x1 with
f (x0) 6= f (x1).
Would not be a useful definition.
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Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.
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Notations

I Brackets: [x ] = g x .

I Matrices and brackets:
x11 . . . x1n

...
. . .

...
xd1 . . . xdn


 =

[x11] . . . [x1n]
...

. . .
...

[xd1] . . . [xdn]


I We encrypt vectors x, and give keys for vectors y. We

conflate fy : x→
∑n

i=1 xiyi and y.

I Scalar x , vector x and matrix X.
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Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation (if we encrypt the squares).



Machine learning: linear regression

Predict t (e.g. income) from x (e.g. housing data about the
family).

A somewhat naive model:

t ≈
∑n

i=1 xiyi

≈ 〈x, y〉

Works very well for some (basic) problems!
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Machine learning: linear classification

Figure: The CIFAR10 dataset.
Source: https://www.cs.toronto.edu/∼kriz/cifar.html



Machine learning: linear classification

Figure: CIFAR10 linear classifiers as images.
Source: http://cs231n.github.io/linear-classify/
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Leakage

The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.
Actual number of keys you can give depends on plaintext
distribution.
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Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

([s], x): Pick r
$← Zp. Return [r ], [x+ rs].

I KeyGen

(s, y): Return 〈s, y〉.

I Decrypt

(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.
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Correctness

I Decrypt(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.

Proof.
On the black board, or check the paper.
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Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen

(S, y): Return Sᵀy.

I Decrypt

(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.
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Correctness

Compute

[γ] = [(x+ Sar)ᵀy − (ar)ᵀSᵀy]

and solve the discrete logarithm to return γ.

Proof.
On the black board (or check the paper).



Security

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick a $← Z2
p, S

$← Zn×2
p . Return ([a], [Sa]), (a,S).

I Encrypt(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen(S, y): Return Sᵀy.

I Decrypt(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [(x+ Sar)ᵀy − (ar)ᵀSᵀy]

and solve the discrete logarithm to return γ.

Proof.
On the black board (or check Appendix A in AGR+17).
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