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Functional Encryption

Traditional PKE: all or nothing.

I Have the key? Get the
plaintext.

I Don’t have the key? Get
nothing.

Functional Encryption: A new
paradigm.
Get a function of the cleartext.
Function depends on the key.
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Functional Encryption: Formal definition

Four algorithms:

I Setup

(λ): Returns (ek,msk).

I Encrypt

(ek ,x): Returns c .

I KeyGen

(msk ,f ): Returns skf .

I Decrypt

(skf ,c): Returns f (x).

Function hiding.
f ∈ F : the functionality.
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.
For any non-trivial f =⇒ distinguish by submitting x0, x1 with
f (x0) 6= f (x1).
Would not be a useful definition.
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Security definitions

Indistinguishibility-Based Game

Polynomial number of queries to the following oracles:

I Initialize: Run the setup and send the public key.

I KeyDer: Run KeyGen and give the decryption key.

I LeftOrRight: Receive (x0, x1), return Encrypt(ek , xb).

I Finalize: If key requests were legitimate, check validity of
guess.

One query to LeftOrRight is enough.
Requests were illegitimate if for some f queries to KeyDer,
f (x0) 6= f (x1).
Selective game: Adversary must query LeftOrRight first.
Adaptive game: No such constraint.
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Notations

I Brackets: [x ] = g x .

I Matrices and brackets:
x11 . . . x1n

...
. . .

...
xd1 . . . xdn


 =

[x11] . . . [x1n]
...

. . .
...

[xd1] . . . [xdn]


I We encrypt vectors x, and give keys for vectors y. We

conflate fy : x→
∑n

i=1 xiyi and y.

I Scalar x , vector x and matrix X.
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Descriptive statistics

I Averages.

I Weighted averages.

I Standard deviation (if we encrypt the squares).



Machine learning: linear regression

Predict t (e.g. income) from x (e.g. housing data about the
family).

A somewhat naive model:

t ≈
∑n

i=1 xiyi

≈ 〈x, y〉

Works very well for some (basic) problems!
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Machine learning: linear classification

Figure: The CIFAR10 dataset.
Source: https://www.cs.toronto.edu/∼kriz/cifar.html



Machine learning: linear classification

Figure: CIFAR10 linear classifiers as images.
Source: http://cs231n.github.io/linear-classify/
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Leakage

The key for y lets you compute 〈x, y〉 =⇒ one projection.
m independent keys =⇒ m projections.
Actual number of keys you can give depends on plaintext
distribution.
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Presentation

ABDP15
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

([s], x): Pick r
$← Zp. Return [r ], [x+ rs].

I KeyGen

(s, y): Return 〈s, y〉.

I Decrypt

(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.
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Correctness

I Decrypt(〈s, y〉, ([r ], [x+ rs])): Compute

[γ] = [x+ rs]ᵀ · y/[r ]〈s,y〉

and solve the discrete logarithm to return γ.

Proof.
On the black board, or check the paper.
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Presentation

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup

I Encrypt

(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen

(S, y): Return Sᵀy.

I Decrypt

(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [x+ Sar ]ᵀ · y − [ar ]ᵀ · Sᵀy

and solve the discrete logarithm to return γ.
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Fixed n. F ≈ Zn

p, fy ≈ y.
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Correctness

Compute

[γ] = [(x+ Sar)ᵀy − (ar)ᵀSᵀy]

and solve the discrete logarithm to return γ.

Proof.
On the black board (or check the paper).



Security

ALS16
Fixed n. F ≈ Zn

p, fy ≈ y.

I Setup(λ): Pick a $← Z2
p, S

$← Zn×2
p . Return ([a], [Sa]), (a,S).

I Encrypt(([a], [Sa]), x): Pick r
$← Zp. Return [ar ], [x+ Sar ].

I KeyGen(S, y): Return Sᵀy.

I Decrypt(Sᵀy, ([ar ], [x+ Sar ])): Compute

[γ] = [(x+ Sar)ᵀy − (ar)ᵀSᵀy]

and solve the discrete logarithm to return γ.

Proof.
On the black board (or check Appendix A in AGR+17).



References

1. M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval.
Simple functional encryption schemes for inner products. PKC
2015.

2. M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input
Inner-Product Functional Encryption from Pairings.
EUROCRYPT 2017.

3. S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional
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