Dynamic Decentralized **Functional Encryption**

Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval

CRYPTO 2020, Monday August 17th 2020

The technological landscape of the early 21st century

- •Lots of data.
- Increasing parallel computing power.
- Investments in Machine Learning talent.

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Can we protect privacy without sacrificing the benefits of modern data science?

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Isn't that what FHE is for?

- •In FHE, a client sends a ciphertext to a server.
- •The server obliviously computes on the ciphertext.
- The client gets back the result.
- Multiparty extensions exist.

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

• But no *non-interactive* way for server to extract intelligence from multiparty data.

Today's Topic Allowing a server to aggregate my data with that of other users, non-interactively.

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

The Agenda How does DDFE relate to FE? • What is DDFE? Construction of DSum-DDFE Construction of AoNE-DDFE **Construction of IP-DDFE**

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

A Brief History of Functional Encryption

Identity-Based Encryption [BF 2001, Cocks 2001]

Functional Encryption [SW 2008, O'Neill 2010, BSW 2011]

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Public Key Encryption [Cocks 1973, RSA 1977]

Attribute-Based Encryption [SW 2004, GPSW 2006]

Functional Encryption is a framework

- PKE is not a special case of IBE. It is a weaker primitive.
- IBE is not a special case of ABE. It is a weaker primitive.
 IBE and ABE are special cases of FE.

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Functional Encryption for Multiple Users

Decentralized Multi Client Functional Encryption [CDGPP 18]

Dynamic Decentralized Functional Encryption

Edouard Dufour Sans

Multi Input / Multi Client Function Encryption [GGJS 13, GKLSZ 13]

Ad Hoc Multi Input Functional Encryption [ACFGOT 19]

Dynamic Decentralized Functional Encryption

The Agenda

- How does DDFE relate to FE? \checkmark
- What is DDFE?
- Construction of DSum-DDFE
- Construction of AoNE-DDFF
- Construction of IP-DDFE

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Alice

Allow training of Neural Network on data from Me, Bob, Charlie, Diane

Charlie

Allow training of Neural Network on data from Alice, Bob, Me, Diane

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Allow training of Neural Network on data from Me,

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

DDFE - Formally

• A Functionality $\mathcal{F}: \mathcal{L}(\mathcal{PK} \times \mathcal{K}) \times \mathcal{L}(\mathcal{PK} \times \mathcal{M}) \to \{0,1\}^*$ • $Setup(\lambda)$: Generate public parameters. • $pk, sk_{pk} \leftarrow KeyGen()$: Generate my public/private key pair. • $Encrypt(sk_{pk}, m)$: Generate a ciphertext ct_{pk} . • $DKeyGen(sk_{pk}, k)$: Generate a functional key $dk_{pk,k}$. • $Decrypt((dk_{pk,k_{pk}})_{pk\in\mathcal{U}_{K}}, (ct_{pk})_{pk\in\mathcal{U}_{K}})$

Edouard Dufour Sans

$$(p_{k \in \mathcal{U}_{M}})$$
: Evaluate \mathcal{F} .

Dynamic Decentralized Functional Encryption

DDFE - Functionality examples

Allow training of Neural Network on data from Me, Bob, Charlie, Diane

Date: 3/1/2020 To be aggregated with data from Bob, Charlie, and Diane circuit

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

$\bullet \mathcal{K} = \mathcal{S}(\mathcal{PK}) \times \mathcal{C}$ Set of users and a

• $\mathcal{M} = \mathcal{I}mages \times \mathcal{D}ates \times \mathcal{S}(\mathcal{P}\mathcal{K})$ An image, a date, a set Sers

DDFE - Functionality examples

 $\mathscr{F}((pk,(\mathscr{U},\mathsf{NN_training}))_{pk\in\mathscr{U}},(pk,(x_{pk},Date,\mathscr{U}))_{pk\in\mathscr{U}})=\mathsf{NN_training}((x_{pk})_{pk\in\mathscr{U}})$

Allow training of Neural Network on data from Me, Bob, Charlie, Diane

Date: 3/1/2020 To be aggregated with data from Bob, Charlie, and Diane

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

$\bullet \mathcal{U}_M = \mathcal{U}_K = \mathcal{U}$

• Date is the same for all cts NN_training is the same for all keys

The Agenda

- How does DDFE relate to FE? \checkmark
- •What is DDFE? <
- Construction of DSum-DDFE
- Construction of AoNE-DDFE
- Construction of IP-DDFE

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

DSum-DDFE: The functionality

- Sums over an Abelian Group A.
- $-\mathcal{M} = \mathbb{A} \times \mathcal{S}(\mathcal{P}\mathcal{K}) \times \{0,1\}^*$ A group element, a set of users, a label. $-\mathscr{K}=\emptyset$ No keys. $-\mathcal{F}(\epsilon, (pk, (x_{pk}, \mathcal{U}, \ell))_{pk \in \mathcal{U}}) = \sum x_{pk}$

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

 $pk \in \mathcal{U}$

If the user *pk* can compute a mask $r_{pk,\mathcal{U},\ell} \in A$ such that

then they can just publish $x_{pk} + r_{pk,\mathcal{U},\ell}$

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

$\sum r_{pk',\mathcal{U},\ell} = 0,$

in a decentralized and non-interactive way?

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

DSum-DDFE: Sum-of-PRFs [Waters in CC09]

- Computational solution.
- Compute $r_{pk,\mathcal{U},\ell}$ as

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

• Compute shared randomnesses $K_{pk,pk'}$ via DH.

 $\sum_{pk' \in \mathcal{U}} F_{K_{pk,pk'}}(\ell) - \sum_{pk' \in \mathcal{U}} F_{K_{pk,pk'}}(\ell)$ pk < pk'

DSum-DDFE: Technical Difficulties

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

DSum-DDFE: Technical Difficulties

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

DSum-DDFE: Technical Difficulties

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

DSum-DDFE: Technical Difficulties

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

DSum-DDFE: Technical Difficulties $x'_{Alice} = 20 \in \mathbb{Z}_{2^{32}}$ $\mathcal{U} = \{Alice, Bob\}$ $x_{Alice} = 3 \in \mathbb{Z}_{2^{32}}$ $\mathcal{U} = \{Alice, Bob\}$ $\mathcal{\ell} = Today$ Alice $\ell = Today$ Charlie

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

Dynamic Decentralized Functional Encryption

All-or-Nothing Encapsulation: The functionality $-\mathcal{M} = \{0,1\}^L \times \mathcal{S}(\mathcal{P}\mathcal{K}) \times \{0,1\}^*$ L bits of data, a set of users, a label. $-\mathcal{K}=\mathcal{O}$ No keys. $-\mathcal{F}(\epsilon, (pk, (x_{pk}, \mathcal{U}, \ell))_{pk \in \mathcal{U}}) = (pk, x_{pk})_{pk}$

Dynamic Decentralized Functional Encryption

All-or-Nothing Encapsulation solves the problem of an adversary abusing linear structure without getting enough ciphertexts for the Finalize condition to kick in.

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

All-or-Nothing Encapsulation from IBE

$|\mathcal{U}|$ layers of IBE encryption on identity ℓ + my key for identity ℓ

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

All-or-Nothing Encapsulation from [BF01] has succinct ciphertexts [Paper]

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

The Agenda

- How does DDFE relate to FE? \checkmark
- •What is DDFE?
- Construction of DSum-DDFE
- Construction of AoNE-DDFE \checkmark
- Construction of IP-DDFE

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Inner Product DDFE: The functionality

- Inner Products over \mathbb{Z}_p .
- $-\mathcal{M} = \mathbb{Z}_p \times \mathcal{S}(\mathcal{PK}) \times \{0,1\}^*$ A scalar, a set of users, a label.
- $-\mathcal{K} = \{(pk, y_{pk})_{pk \in \mathcal{U}} | \mathcal{U} \in \mathcal{S}(\mathcal{PK})\}$ Weights over a set of users
- $-\mathcal{F}((pk,(pk',y_{pk'})_{pk\in\mathcal{U}})_{pk\in\mathcal{U}},(pk,(x_{pk},\mathcal{U},\ell))_{pk\in\mathcal{U}}) = \sum x_{pk}y_{pk}$ $pk \in \mathcal{U}$

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Inner Product MCFE: Basic idea [CDGPP 18]

- KeyGen(): secret key $s \leftarrow \mathbb{Z}_p$
- $Encrypt(s, (x, \mathcal{U}, \ell)): g^x \cdot \mathcal{H}(\mathcal{U} \mid \mid \ell)^s$
- $DKeyGen((s_{pk})_{pk\in\mathcal{U}}, (y_{pk'}, pk')_{pk'\in\mathcal{U}})$: $\sum s_{pk}y_{pk}$
- $Decrypt(dk, (pk, c_{pk})_{pk \in \mathcal{U}}):$ $\prod c_{pk}^{y_{pk}} / \mathcal{H}(\ell)^{dk} = \prod \left(g^{x_{pk}} \cdot \mathcal{H}(\mathcal{U} \mid \mid \ell) \right)^{y_{pk}} / \mathcal{H}(\ell)^{\sum_{pk \in \mathcal{U}} s_{pk} y_{pk}}$ $pk \in \mathcal{U}$ $pk \in \mathcal{U}$

 $= g^{\sum_{pk\in\mathscr{U}} x_{pk}y_{pk}}$

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

pk∈U

How do we distribute key generation?

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

How do we distribute key generation?

The key is a sum of the $y_{pk}s_{pk}$, just use DSum!

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

How do we protect against repeated queries?

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

How do we protect against repeated queries?

Same as DSum, with AoNE!

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Going from scalar messages \mathbb{Z}_p to vector messages \mathbb{Z}_p^d requires IPFE and another use of AoNE [Paper].

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

Recap: Our contributions

Edouard Dufour Sans

Dynamic Decentralized Functional Encryption

